Exemplo de **dimensionamento de vigas reforçadas à flexão** com o uso da **técnica TRM/TRC**

MATHEUS H. M. DE MORAES – ENG., ORCID https://orcid.org/0000-0002-7285-1344, matheus.h.h@hotmail.com; HENRIQUE M. FRANCKLIN – PROF., ORCID https://orcid.org/0000-0002-1416-7800 – UFSCAR. GLÁUCIA M. DALFRÉ – PROF., ORCID https://orcid.org/0000-0003-3623-5103 – UFSCAR, UNIVERSITY OF BIRMINGHAM, UK; BAHMAN GHIASSI – PROF., ORCID https://orcid.org/0000-0003-4212-8961 – UNIVERSITY OF BIRMINGHAM, UK.

RESUMO

A técnica de reforço TRM/TRC (*Textile Reinforced Mortar/Concrete*), também baseada no uso de FRPs (Fiber Reinforced Polymers) embebidos em matriz cimentícia, tem se mostrado eficiente no aumento da capacidade de carga de elementos submetidos à flexão e cisalhamento. Esta técnica apresenta algumas vantagens quando comparadas às baseadas no uso de resinas epoxídicas, como a EBR (*Externally Bonded Reinforcement*) e NSM (*Near Surface Mounted*), tais como: possibilidade de aplicação em locais com umidade, em ambientes de alta agressividade e expostos a raios UVA/UVB e, principalmente, devido à resistência ao fogo. Neste sentido, o presente trabalho apresenta um estudo analítico para verificação da eficiência da técnica TRM no incremento da capacidade resistente de vigas de concreto reforçadas à flexão com grelhas de CFRP (*Carbon Fiber Reinforced Polymer*) embebidas em matriz cimentícia. Tais resultados foram, posteriormente, comparados ao de um programa experimental realizado por Raoof, Koutas e Bournas (2017). De posse dessas informações, foi possível obter um melhor entendimento da eficácia do sistema de reforço TRM aplicado em vigas de concreto armado.

PALAVRAS-CHAVE: DIMENSIONAMENTO, ESTUDO COMPARATIVO, REFORÇO ESTRUTURAL, VIGAS DE CONCRETO ARMADO, TRM/TRC, GRELHAS DE FRP EM MATRIZ CIMENTÍCIA.

1. INTRODUÇÃO

objetivo principal deste trabalho é obter um melhor entendimento do comportamento à flexão de vigas armadas não reforçadas (referência) e reforçadas com o uso da técnica TRM (Textile-Reinforced Mortar, em língua inglesa) ou TRC (Textile-Reinforced Concrete, em língua inglesa). Assim, espera-se contribuir com o avanco do conhecimento acerca da utilização grelhas de FRP (Fiber Reinforced Polymers) embebidas em matriz cimentícia para aplicação no reforço de elementos de concreto armado. Para informações sobre a técnica de reforço TRM ou TRC em vigas de concreto armada consultar o artigo "Dimensionamento da técnica TRM/ TRC para reforço à flexão de elementos de concreto armado segundo a norma americana ACI 529.4R (2020)", na edição 106 da CONCRE-TO & Construções.

2. EXEMPLO DE CÁLCULO

Um estudo analítico do comportamento de uma viga biapoiada de concreto armado, sem reforço (Referência) e de três vigas biapoiadas de concreto armado reforçadas com grelhas de carbono, embebidas em matriz cimentícia, foi realizado. Posteriormente, os resultados analíticos foram comparados aos ensaios recentemente realizados por Raoof, Koutas e Bournas (2017). A Figura 1 apresenta o esquema do ensaio de flexão a quatro pontos (os pontos de aplicação de carga e apoios), as características geométricas e as armaduras longitudinais das vigas, enguanto os diagramas de momento fletor e esforco cortante, com a = 580 mm e b = 340 mm, são representados na Figura 2.

As quatro vigas foram confeccionadas com dimensões de 101x202x1675 mm³, vão livre entre os apoios de 1500 mm, altura útil de 17,6 cm, e concreto com resistência característica à compressão de 19,9 MPa (valor experimentalmente obtido). As vigas foram produzidas com armaduras longitudinais positivas compostas por 2 barras de aço, com tensão de escoamento do aço característica de 569 MPa, com diâmetro de 8 mm, e armadura transversal com barras de 8 mm de diâmetro.

O reforço das vigas foi realizado com grelhas de carbono com espessura nominal de 0,095 mm, massa de 384 g/m², tensão última de tração (f_{e}) de 1518 MPa, deformação última tração (ɛfu) de 7,93‰ e módulo de elasticidade (E_{f}) de 166,8 GPa, que foram aplicadas segundo a técnica TRM. Assim, as gre-Ihas foram embebidas com argamassa cimentícia polimérica, com relação água/cimento de 0,23, com resistência média à flexão e à compressão de 39,2 MPa e 9,8 MPa, respectivamente. O reforço foi aplicado em uma, três e cinco camadas, com espessuras de 3 mm, 6 mm e 10 mm, com taxas de material de reforço ($\rho_{\rm f}$) de 0,0475%, 0,1425% e 0,2375%, respectivamente.

Com relação à viga armada de referência (sem reforco), a capacidade resistente foi determinada com base nas disposições da ABNT NBR 6118 (2014) e do ACI 318 (2019). Para o dimensionamento das vigas armadas com barras de aço, a ABNT NBR 6118 (2014) utiliza coeficientes de minoração das propriedades dos materiais, nomeadamente, resistência à compressão do concreto e resistência ao escoamento do aco, enquanto a ACI 318 (2019) não utiliza coeficiente de minoração das propriedades, entretanto reduz a capacidade resistente obtida por um coeficiente de seguranca determinado com base no tipo de estribo utilizado e na deformação apresentada pelo aço. Para o dimensionamento das vigas reforcadas, o ACI 549.4R (2020) apresenta procedimentos baseados no ACI 318 (2019), ou seja, a capacidade resistente obtida é reduzida por um coeficiente de segurança determinado com base no tipo de ruína obtida. Assim, neste trabalho, os cálculos de capacidade resistente das vigas

580

102

reforçadas segundo a técnica TRM foram realizados com e sem a utilização dos coeficientes de redução apresentados pelos códigos de dimensionamento utilizados de forma a se obter valores de projetos e, também, simular os resultados obtidos em laboratório.

2.1 ABNT 6118 (2014)

A determinação da resistência à flexão das vigas de referência tomou como base a ABNT NBR 6118 (2014), aplicando-se o método do diagrama simplificado de distribuição de tensões e deformações em seções retangulares para viga de concreto armado com armadura simples (Figura 3).

A determinação da profundidade da linha neutra é obtida com o uso da Equação 1, onde A_s é a área da armadura longitudinal (2Ø8mm, p e r f a z e n d o

Placa de apoio

uma área de 1,00 cm²), $f_{\mu\nu}$ é a tensão de escoamento do aco característica (569 MPa), d é a altura útil (17,6 cm), $\lambda \acute{e}$ o valor definido em o 8 para a altura do diagrama retangular simplificado da distribuição de tensões do concreto comprimido de resistência até 50 MPa, x é a profundidade da linha neutra, b... é a largura da seção transversal, α_c é iqual ao valor de 0,85 da tensão máxima de compressão para concretos até 50 MPa e f_{cd} é a resistência característica do concreto (19,9 MPa). Em situações de projeto, no cálculo da profundidade da linha neutra, a resistência característica do concreto e a tensão de escoamento do aco são reduzidas por coeficientes de minoração iguais a 1,4 e 1,15, respectivamente.

Figura 2

Carregamentos e esforços atuantes na viga diagrama de momento fletor e esforço cortante Fonte: Próprio autor (2021)

Figura 3

Diagrama de tensão e deformação seção retangular Fonte: Próprio autor (2021)

Figura 1

87.5

2012

208

TRM

б

(a) Representação da viga adotada com armadura longitudinal, (b) seção transversal e (c) grelha de CFRP utilizada no reforço TRM (medidas em mm) Fonte: Adaptado de Raoof, Koutas e Bournas (2017)

C

2Ø8

340

1350 1500

1675

a

[1]
$$x = \frac{A_s \cdot f_y}{\alpha_c \cdot \lambda \cdot b_w \cdot f_{cd}}$$
$$x = \frac{1,00 \ cm^2 \cdot \left(56.9 \ \frac{kN}{cm^2} / 1,15\right)}{0,85 \cdot 0.8 \cdot 10.2 \cdot \left(1,99 \ \frac{kN}{cm^2} / 1,4\right)} = 5,02 \ cm$$

Pela comparação com $x_{2/3} = 0,259 \cdot d$ e $x_{lim} = 0,45 \cdot d$, pode-se observar que a profundidade da linha neutra se encontra no Domínio 3. Obtendo-se o valor do momento resistente do bloco comprimido (M_{rc}) e tracionado (M_{rs}), são utilizados os procedimentos de cálculo apresentados nas Equações 2 e 3, respectivamente.

$$M_{rc} = \alpha_c \cdot f_{cd} \cdot b_w \cdot \lambda \cdot x \cdot \left(d - \frac{\lambda \cdot x}{2}\right)$$

$$M_{rc} = 0.85 \cdot \left(\frac{19900 \frac{kN}{m^2}}{1.4}\right) \cdot 0.102 m$$

$$\cdot 0.8 \cdot 0.0502 m$$

$$\cdot \left(0.176 m - \frac{0.8 \cdot 0.0502m}{2}\right)$$

$$M_{rc} = 7,72 \ kN \cdot m$$

$$M_{rs} = A_s \cdot f_y \cdot \left(d - \frac{\lambda \cdot x}{2}\right)$$

$$M_{rs} = 1 \ cm^2 \cdot \left(\frac{56,9 \ \frac{kN}{cm^2}}{1,15}\right)$$

$$\cdot \left(0,176 \ m - \frac{0,8 \cdot 0,0502m}{2}\right)$$

$$M_{rs} = 7,71 \ kN \cdot m$$

Levando em conta a disposição do carregamento aplicado, o momento resistente é correspondente a uma força P igual a 26,58 kN (P/2 igual a 13,29 kN).

2.2 ACI 318 (2019)

O dimensionamento segundo as prescrições da norma ACI 318 também

Figura 4
 Diagrama retangular equiv
 Fonte: Próprio autor (2021)

permite como simplificação o uso de um diagrama retangular equivalente e as distribuições de deformações nos materiais, como as apresentadas na Figura 4. Entretanto, o dimensionamento é realizado com o uso de valores característicos de propriedades dos materiais, e a capacidade resistente é posteriormente minorada pelo fator de redução φ .

Os valores de β_1 variam de acordo com a classe de resistência à compressão do concreto (f'_c) e possuem os valores apresentados na Equação 4. Tendo em vista a resistência à compressão de 19,9 MPa, um valor de β_1 igual a 0,85 foi obtido.

Considerando-se que a área da armadura longitudinal (A_s) é de 1,00 cm², f_y é a tensão de escoamento do aço característica (569 MPa), b é a largura da seção transversal, e f'_c é a resistência característica do concreto (19,9 MPa), a profundidade do bloco retangular equivalente (a) é obtida com o uso da Equação 5.

[5]
$$a = \frac{A_s \cdot f_y}{0.85 \cdot f_c' \cdot b}$$
$$a = \frac{1,00 \ cm^2 \cdot 56.9 \ \frac{kN}{cm^2}}{0.85 \cdot 1.99 \ \frac{kN}{cm^2} \cdot 10.2 \ cm} = 3,30 \ cm$$

O valor da linha neutra (c) é calculada por meio da Equação 6.

[6]
$$c = \frac{a}{\beta_1} = \frac{3,30}{0,85} = 3,88 \ cm$$

A deformação do aço (ε_c) pode ser obtida com o uso da equação de compatibilidade das deformações apresentada pela Equação 7. A norma ACI 318 (2019) leva em conta que deforúltima mação no concreto (ϵ_{cu}) acontece para o valor de 3‰.

[7]
$$\varepsilon_{s} = \left(\frac{d-c}{c}\right) \cdot \varepsilon_{cu}$$
$$= \left(\frac{17,6-3,88}{3,88}\right) \cdot 3\%_{0} = 10,61\%_{0}$$

Sabendo que módulo de elasticidade do aço (E_s), definido pela norma americana com o valor de 200 GPa, é possível calcular a deformação de início de escoamento (ϵ_{sy}) da armadura, tal como o apresentado na Equação 8.

[8]
$$\varepsilon_{sy} = \frac{f_y}{E_s} = \frac{569 MPa}{200000MPa} = 0,0028 = 2,8\%$$

Assim, verifica-se que o aço está escoando (ou seja, $\varepsilon_s > \varepsilon^{sy}$, Equação 7) e que $f_v = 569$ MPa.

O momento nominal resistido pela análise do bloco tracionado (M_n) é calculado com o uso da Equação 9.

[9]
$$M_n = A_s \cdot f_y \cdot \left(d - \frac{a}{2}\right)$$
$$M_n = 1cm^2 \cdot 56.9 \frac{kN}{cm^2}$$
$$\cdot (0.176 - 0.0330/2) = 9.07 \ kN \cdot m$$

O coeficiente de redução φ pode ser obtido por meio da Equação 10, onde ε_s é o nível de deformação da armadura de aço obtida no dimensionamento (neste caso, 10,61‰) e ε_{sy} é a deformação de escoamento da armadura de aço (2,8‰).

$$[10] \quad \phi = \begin{cases} 0.90 & para & \varepsilon_s \ge 0.005 \\ 0.65 + \frac{0.25 \cdot (\varepsilon_s - \varepsilon_{sy})}{(0.005 - \varepsilon_{sy})} & para & \varepsilon_{sy} < \varepsilon_s < 0.005 \\ 0.65 & para & \varepsilon_s \le \varepsilon_{sy} \end{cases}$$

Considerando os resultados apresentados, o coeficiente de redução φ possui o valor de 0,90. Segundo a ACI 318 (2019), o momento resistente de cálculo (M_u) pode ser obtido pelo produto entre o momento nominal e o fator de redução φ (Equação 11).

Considerando o esquema estático e o carregamento, este momento corresponde a uma força P igual a 28,14 kN (P/2 igual a 14,07 kN).

2.3 ACI 549.4R (2020)

A determinação da capacidade resistente da seção transversal reforçada

Figura 5

quilíbrio de forças de uma seção retangular de uma viga reforçada i**onte:** Adaptado ACI 549.4R (2020)

segundo a técnica TRM foi realizada com o uso da norma americana ACI 549.4R (2020). A esquematização do equilíbrio de forças de uma viga de concreto armado reforçada segundo a técnica TRM pode ser verificada na Figura 5.

O cálculo do sistema de reforço é iniciado com a determinação da deformação no substrato de concreto que receberá o material de reforço no momento da aplicação (ϵ_{bi}), com o uso das Equações 12 a 18, onde M_{DL} é o momento fletor devido a atuação do peso próprio, E_c é o módulo de elasticidade do concreto e E_s é o módulo de elasticidade do aço. Para o cálculo de E_c foi utilizada a formulação proposta pela norma ACI 318 (2019), tal como o apresentado na Equação 12.

[12]
$$E_c = 4700 \cdot \sqrt{f'_c} = 4700 \cdot \sqrt{19,9 MPa}$$

= 20966,43 MPa

Considerando-se que o módulo de elasticidade do aço (E_s) possui o valor de 200 GPa e que para cálculo do momento fletor devido a atuação do peso próprio (M_{DL}) foi considerado elemento de concreto armado, com peso próprio de 25 kN/m³, obtém-se M_{DL} igual a 0,146 kN·m. Assim:

[15]
$$I_g = \frac{b \cdot h^3}{12} = \frac{10, 2 \cdot 20, 3^3}{12} = 7110, 61 \ cm^4$$

[16]
$$k \cdot d = \frac{(\sqrt{2 \cdot d \cdot B + 1} - 1)}{B} = \frac{(\sqrt{2 \cdot 17, 6 \cdot 1, 06 + 1} - 1)}{1, 06} = 4,89 \ cm$$

[17]
$$I_{cr} = \frac{b \cdot (k \cdot d)^3}{3} + n \cdot A_s (d - k \cdot d)^2$$
$$I_{cr} = \frac{10, 2 \cdot (4,89)^3}{3} + 9,54 + 1,00(17, 6 - 4,89)^2 = 1938, 69 \ cm^4$$

Considerando-se que o TRM aplicado em 1 camada possui espessura de 3 mm, obtém-se d_r igual a 20,45cm (20,3 cm + 0,15cm), considerando a medida como sendo a altura total da viga somada a metade da altura do material de reforço).

Para dar início ao dimensionamento, arbitra-se uma posição inicial para a posição da linha neutra (c). O valor para a profundidade de linha neutra recomendado pela norma ACI 440.2R (2017) para a primeira iteração é igual a 0,2 · d, resultando em um valor de 3,52 cm. Isso permite calcular a deformação efetiva do sistema de reforço (ε_{re}) com o uso da Equação 19, onde ε_{cu} é a deformação última do concreto, a qual possui o valor de 3‰.

[19]
$$\varepsilon_{fe} = \varepsilon_{cu} \left(\frac{d_f - c}{c} \right) - \varepsilon_{bi} \le \varepsilon_{fd}$$
$$\varepsilon_{fe} = 3\%_0 \left(\frac{20,45 - 3,52}{3,52} \right) - 0,056\%_0$$
$$= 14,37\%_0 \le \varepsilon_{fd} = 7,93\%_0$$

Logo para o processo iterativo, considerou-se uma deformação efetiva do sistema de reforço ($\epsilon_{\rm FF}$) de 7,93‰.

Assim como recomendado pela norma ACI 549.4R (2020), determinam-se as deformações da armadura longitudinal no aço (ε_s) e do concreto (ε_c), assim como a tensão da armadura longitudinal (f_s), tal como o apresentado nas Equações 20 a 22.

$$[20] \begin{aligned} \varepsilon_{s} &= \left(\varepsilon_{fe} + \varepsilon_{bi}\right) \cdot \left(\frac{d-c}{h-c}\right) \\ &= (7,93\%_{0} + 0,056\%_{0}) \\ \cdot \left(\frac{17,6\ cm - 3,52\ cm}{20,3\ cm - 3,52\ cm}\right) = 6,70\%_{0} \end{aligned}$$

$$[21] \begin{aligned} \varepsilon_{c} &= \left(\varepsilon_{fe} + \varepsilon_{bi}\right) \cdot \left(\frac{c}{h-c}\right) = (7,93\%_{0} + 0,056\%_{0}) \\ \cdot \left(\frac{3,52\ cm}{20,3\ cm - 3,52\ cm}\right) = 1,67\ \%_{0} \end{aligned}$$

$$[22] \begin{aligned} f_{s} &= E_{s} \cdot \varepsilon_{s} = 200000 \cdot 6,70\%_{0} \\ &= 1340\ MPa \leq f_{y}. \\ \text{Portanto, } f_{y} &= 569\ MPa \end{aligned}$$

Posteriormente, foi calculado a tensão no sistema de reforço (f_{fe}), apresentado na Equação 23.

[23]
$$\begin{aligned} f_{fe} &= E_f \cdot \varepsilon_{fe} = 166,8 \ GPa \\ \cdot 7,93\%_0 &= 1322,72 \ MPa \end{aligned}$$

Com as tensões e deformações na armadura longitudinal e no material de reforço TRM/TRC determinados, verifica-se as condições de equilíbrio da seção, que são calculadas com o uso das Equações 24 a 27, onde ε_c é a deformação máxima do concreto, ε' é a deformação do concreto não confinado, E, é o modulo de elasticidade do concreto e A, é a área da seção transversal da armadura longitudinal existente. Aqui será apresentado o processo de cálculo para 1 camada de material de reforço aplicado segundo a técnica TRM, com área de reforço (A_{f}) iqual a 0,0984 cm², tal como o apresentado na Equação 27.

Como a profundidade de linha neutra (c) arbitrada é diferente da obtida no dimensionamento, atribui-se nova profundidade de linha neutra e realizam-se novos cálculos até que a posição calculada da linha neutra seja igual a arbitrada. Para esta análise, considerou-se, como critério de convergência, diferença entre valores da linha neutra de $1 \cdot 10^{-5}$ m, necessitando de 5, 13 e 23 iterações para obter a convergência para as vigas reforçadas com 1, 3 e 5 camadas de TRM, respectivamente. A Figura 6 ilustra o comportamento da linha

Figura 6 Comportamento da linha neutra versus número de iterações para cada uma das vigas Fonte: Próprio autor (2021)

🕨 Tabela 1

Resumo das variaveis obtidas do cálculo iterativo das vigas

Variável	1 camada	3 camadas	5 camadas	
c (cm)	4,62	6,27	7,13	
$\epsilon_{\rm fe}~(\infty)$	7,93	6,67	5,49	
ε _c (‰)	2,40	3,00	3,00	
ε, (‰)	6,60	5,40	4,40	
f _{fe} (MPa)	1322,72	1110,55	915,89	
f _s (MPa)	569,00	569,00	569,00	
ε' (‰)	1,61	1,61	1,61	
β	0,8240	0,9383	0,9383	
α,	0,9094	0,7534	0,7534	
Fonte: Próprio Autor (2021)				

neutra (c) ao decorrer das iterações para as vigas reforçadas, onde TRM-1, TRM-3 e TRM-5 representam as vigas reforçadas com 1, 3 e 5 camadas, respectivamente

Pode-se observar que, com o aumento do número de camadas, houve o aumento no número de iterações necessárias para se obter a convergência da linha neutra. A Tabela 1 apresenta um resumo dos resultados obtidos para os diferentes números de camadas avaliados.

Finalizando-se o procedimento de cálculo para ELU calcula-se o momento nominal resistente (M_n) do elemento reforçado com o uso da Equação 30, o qual consiste na somatória das parce-las de momento nominal resistido pela armadura (M_{ns}) e pelo material de reforço (M_{nf}), respectivamente, tal como apresentado nas Equações 28 e 29 respectivamente. Tendo em vista a resistência à compressão de 19,9 MPa, um valor de β_i igual a 0,85 foi obtido. Ainda, considerando-se o dimensionamento com o uso de 1 camada de TRM, tem-se:

[28]
$$M_{ns} = A_s \cdot f_s \left(d - \frac{\beta_1 \cdot c}{2} \right)$$
$$M_{ns} = 1 \cdot 56.9 \left(17.3 - \frac{0.85 \cdot 4.62}{2} \right)$$
$$= 872.6 \ kN \cdot cm = 8.73 \ kN \cdot m$$

[29]
$$M_{nf} = A_f \cdot f_{fe} \cdot \left(d_f - \frac{\beta_1 \cdot c}{2}\right)$$
$$M_{nf} = 0,0984 \cdot 132,272$$
$$\cdot \left(20,45 - \frac{0,85 \cdot 4,62}{2}\right)$$
$$= 240,6kN \cdot cm = 2,41 \, kN \cdot m$$

[30] $M_n = M_{ns} + M_{nf}$ $M_n = 8,73 + 2,41 = 11,14 \ kN \cdot m$

O fator de redução (φ), apresentado na Equação 31, depende da deformação do aço (ε_s) e da deformação de escoamento do aço (ε_{sy}). Para ε_s = 6,60‰ > 5‰, tem-se φ igual a 0,90.

		(0,90	para	$\varepsilon_s \ge 0,005$
[31]	φ = <	$0,65 + \frac{0,25 \cdot (\varepsilon_s - \varepsilon_{sy})}{0,005 - \varepsilon_{sy}}$	para	$\varepsilon_{sy} < \varepsilon_s < 0,005$
		0,65	para	$\varepsilon_s \leq \varepsilon_{sy}$

O momento último (M_u) é obtido com o produto do momento resistente (M_n) e o fator de redução (ϕ) , assim como apresentado na Equação 32.

A Tabela 2 apresenta os resultados obtidos para o momento nominal resistido pela armadura (M_{ns}), pelo reforço TRM (M_{nf}), o momento nominal resistente (M_{n}), o fator de redução (ϕ), o momento último (M_{u}) e a Força (P) correspondente para as vigas reforçadas.

3. COMPARAÇÃO ENTRE OS MODELOS DE DIMENSIONAMENTO E RESULTADOS EXPERIMENTAIS

Os resultados do programa experimental conduzido por Raoof, Koutas e Bournas (2017) permitem avaliar a expectativa de capacidade resistente obtida via modelos de dimensionamento. A Figura 7 apresenta as curvas Força (F) versus deslocamento

Tabela 2

Resumo das variáveis obtidas do cálculo iterativo das vigas

Variável	1 camada	3 camadas	5 camadas	
M _{ns} (kN⋅m)	8,73	8,39	8,16	
M _{nf} (kN⋅m)	2,41	5,69	7,64	
M _n (kN⋅m)	11,14	14,08	15,80	
φ	0,900	0,900	0,842	
M _u (kN⋅m)	10,03	12,67	13,30	
P/2 (kN)	17,29	21,84	22,93	
P (kN)	34,58	43,68	45,86	
Fonte: Próprio Autor (2021)				

Figura 7

Diagrama de força *versus* deslocamento vertica Fonte: Adaptado de Raoof, Koutas e Bournas (2017)

vertical (mm) das vigas avaliadas, enquanto a Tabela 3 apresenta um resumo dos resultados de forças obtidas no ensaio experimental para três momentos distintos: fissuração (P_{cr}), escoamento da armadura longitudinal existente (P_{γ}) e para a máxima força registrada (P_{max}).

Ao se avaliar os dados da Tabela 3 e da Figura 7, verifica-se a efetividade do sistema de reforço TRM. A viga sem reforço apresentou fissuração quando uma força de 9,8 kN foi obtida, enquanto as vigas reforçadas apresentaram fissuras visíveis com forcas de 10,0 kN, 12,8 kN e 16 kN, indicando que o uso da técnica de reforço pode retardar o início da fissuração do elemento. A partir desses pontos, todas as vigas apresentaram redução de rigidez devido à fissuração. Essa nova rigidez mantém-se estável até o início do escoamento da armadura longitudinal tracionada. Percebe-se, mais uma vez, que o início do escoamento da armadura ocorreu para forças aplicadas de 30,1 kN (referência), 35,6 kN (TRM-1), 43,0 kN (TRM-3) e 57,2 kN (TRM-5), indicando um aumento de 18,3% a 90,0%, em relação a viga sem reforço, para a força que leva ao escoamento da armadura longitudinal do elemento. Por fim, para a máxima força registrada no ensaio das vigas de concreto reforçadas, verificou-se aumento da capacidade de 12,7%, 59,8% e 79,8 % para as vigas reforçadas com 1, 3 ou 5 camadas de grelhas de carbono embebidas na matriz cimentícia, respectivamente.

Com relação aos modos de ruptura, a viga de referência (sem nenhum tipo de material de reforço) apresentou ruptura dúctil baseada no escoamento da armadura longitudinal tracionada. As vigas reforçadas apresentam ruptura menos dúctil que a viga de referência. Para além disso, verificou-se que o número de camadas de material de reforço também influencia na ductilidade do elemento.

A Figura 7 também apresenta a comparação entre o comportamento obtido em laboratório e a expectativa de carga obtidas com as normas ABNT NBR 6118 (2014), ACI 318 (2014) e ACI 549.4R (2020). Verifica-se, para as vigas analisadas, que os modelos de dimensionamento utilizados conduzem a resultados seguros em relação à capacidade de carga da estrutura. Observa-se, também, que o aumento do número de camadas de TRC leva a uma diminuição da tensão da armadura longitudinal existente, visto que o sistema de reforço passa a absorver os esforços de tração dos elementos reforçados.

4. CONCLUSÕES

A técnica de reforço de estruturas de concreto armado com FRPs está cada vez mais presente na indústria da construção civil para o aumento da capacidade de carga de um elemento estrutural. Neste sentido, este trabalho apresentou o dimensionamento à flexão de uma viga biapoiada reforçada segundo o sistema TRM, cujos resultados foram comparados aos obtidos em ensaios.

A partir dos resultados obtidos neste trabalho, conclui-se que:

O dimensionamento baseado no uso da técnica TRM proposto pelo ACI 549.4R (2020) mostra-se analiticamente eficaz para determinar o incremento da capacidade

🕨 Tabela 3

Resumo dos resultados de forças obtidas no ensaio experimenta

Viga	Força (kN)			
	Fissuração (P _{cr})	Escoamento (P _y)	Máxima (P _{max})	
Sem reforço	9,80	30,10	34,60	
TRM-1	10,00	35,60	39,00	
TRM-3	12,80	43,00	55,30	
TRM-5	16,00	57,20	62,20	
Fonte: Adaptado de Raoof, Koutas e Bournas (2017)				

de carga de vigas de concreto armado reforçadas com grelhas de FRP embebidas em matriz cimentícia;

- Os modelos apresentados permitem dimensionamento seguro dos elementos de concreto, com e sem sistemas de reforço;
- O aumento do número de camadas

de TRM causa a redução da ductilidade do elemento reforçado;

O uso da técnica TRM/TRC é altamente dependente das propriedades do compósito (grelha de FRP + matriz cimentícia) a ser utilizado. Assim, ensaios para caracterização do compósito são mandatórios para possibilitar o correto dimensionamento do sistema de reforço.

AGRADECIMENTOS

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento oo1.

REFERÊNCIAS BIBLIOGRÁFICAS

- AMERICAN CONCRETE INSTITUTE. ACI COMMITTEE. Building Code Requirements for Structural Concrete ACI 318. Michigan – USA, ACI, 2019.
- [2] _____. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures ACI 440.2R. Michigan - USA, ACI, 2017.
- [3] _____. Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix and Steel-Reinforced Grout Systems for Repair and Strengthening of Concrete Structures ACI 549.4R. Michigan USA, ACI, 2020.
- [4] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS ABNT. Ações para o cálculo de estruturas de edificações NBR 6120. Rio de Janeiro – RJ, ABNT, 2019.
- [5] _____. Projeto de estruturas de concreto Procedimento: NBR 6118. Rio de Janeiro RJ, ABNT, 2014.
- [6] RAOOF, S. M.; KOUTAS, L. N.; BOURNAS, D. A. "Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams", Construction and Building Materials, v. 151, p. 279–291, 2017. DOI: 10.1016/j.conbuildmat.2017.05.023.

PRODUCÃO

REALIZAÇÃO

MINISTÉRIO DA

PATROCÍNIO